1-800-441-8780

1-773-735-0700

Industrial Packaging for Critical Contents

Drum It Up! Steel Drum Industry News, Trends, and Issues

Posts Tagged ‘skolnik steel drums’

The Five Families of Stainless Steel

June 28th, 2018 by Natalie Mueller

Filed under: Stainless Steel

At Skolnik we offer a host of steel containers — our stainless steel drums offer an ideal solution for products requiring the purity, compatibility and strength of stainless steel. But just like Skolnik offers different families of products, there are different families of stainless steel. Five to be exact: austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, duplex stainless steel and precipitation hardening stainless steel. The families are classified by their crystalline structure.

 

Austenitic stainless steel is the largest family. About two thirds of all stainless steel produced falls into this category. Their crystalline structure is achieved by alloying with sufficient nickel and/or manganese and nitrogen. These stainless steels maintain their microstructure at all temperatures so they can’t be hardenable by heat treatment, but can be strengthened by cold working to an extent.

Austenitic stainless steel is great for formability and weldability, they are also essentially non magnetic. They’re often used for tanks, containers, storage vessels, architecture and the like.

 

Ferritic stainless steel has a structure more similar to carbon steel, contains between 10.5% and 27% chromium with very little or no nickel. Due to the chromium structure, ferritic stainless steel also holds its structure at all temperatures and is not hardenable by heat treatment. However, they are magnetic and are problematic to weld.

Welding creates microstructural problems so ferritic stainless steel is not used in the construction of large, heavy walled vessels and tanks and structures.

 

Martensitic stainless steels form a family that can be heat treated to provide the adequate level of mechanical properties. Martensitic stainless steels are magnetic and are less corrosion resistant than ferritic and austenitic due to a lower chromium content.

However, their high carbon content enables them to be significantly hardened so they are commonly used for knives, razor blades, cutlery and tools.

Duplex stainless steel’s structure is a combination of that of austenite and ferrite, usually at a 50/50 or 40/60 mix. It’s characterized by high chromium and molybdenum with lower nickel contents. The mixed microstructure results in higher resistance to chloride stress corrosion.

Duplex stainless steel can be difficult to weld properly, but can sometimes be a cost-effective solution for chemical processing, transport and storage, and marine environments.

 

Precipitation hardening stainless steel has corrosion resistance comparable to austenitic varieties but can be hardened to even higher strengths than martensitic steel. Precipitation hardening stainless steel is often used for gears, valves and other engine components, nuclear waste casks, and other pieces in aerospace and other high-tech industries.

 

Beyond that, there are over 150 grades of stainless steel.

Skolnik stainless steel drums are available in a variety of gauges and sizes and are stainless types 304 and 316, both austenitic, and 409, a ferritic stainless steel. And our products are built thicker, heavier and stronger than industry standards require.

 

Overpack Salvage Drums not Recommended for Primary Shipment

June 25th, 2018 by Natalie Mueller

Filed under: Salvage Drum

Salvage drums have long been used as overpacks for the efficient and effective transport of damaged, defective or leaking containers. However, according to the DOT, salvage drums are NOT to be used as a secondary container, or overpack, for a primary shipment.

Rather, an overpack salvage drum should only be used for damaged, defective, leaking or non-compliant packagings that are discovered after having been placed in transportation.

In 1998, the ‘T’ Salvage drum became the United Nations’ recommended salvage packaging for international use. It is most commonly an 85 US gallon capacity. To bear the UN certification, overpack salvage drums are rigorously tested. They must be able to be dropped 1.2 meters (4 feet) on its most critical orientation without leaking and pass a 30 kPa overall Leakproofness Test. However, while they are certified to hold non-compliant packages in transport, the DOT recommends that, once overpacked in a salvage drum, a non-compliant container should be routed to a facility for disposal or re-containment. You can never be too careful.

And remember, traditional overpack drums are designed to protect non-leaking containers or to be used in a combination pack, they are not certified to hold damaged/non-compliant containers.

Hot or Cold Rolled? The Differences Between Steel Types

May 31st, 2018 by Natalie Mueller

Filed under: Industry News

It should come as no surprise that we here at Skolnik take great care in the steel we use to make our barrels. In every size we offer, from 15 gallon drums to 110 gallon and everything in between, we carefully consider every decision of the process, and one of the first to make is whether to use hot rolled steel, or cold rolled. Despite sounding like coffee orders, these terms describe how the steel is handled early on, and has a big impact on the final outcome of our barrels.

Regardless of the type of rolling process the steel ultimately goes through, when it’s first created it’s shaped into an ingot, billet, bloom or slab; the different shapes and sizes of the still raw, semi-finished steel. From there, the steel is heated above 1700 degrees Fahrenheit, which breaks down the crystals that make up the metal’s natural state. From there, the malleable molten metal is pushed through a variety of wheels, or rollers, that form the metal into its next shape. This can be the “I” shape of a structural beam, the round shape of a rod, or the flat sheets that we eventually use in our drums.

If this is all the work done on the steel, it’s considered hot-rolled. The steel is left to cool and then shipped off to be used in a wide variety of applications. Because of this shorter production time, hot-rolled steel is cheaper than cold-rolled. The trade-off is that is has an unattractive scale on the outside from being heated and is less accurate in its dimensions due to the shrinking and warping that occurs as it cools. Cold-rolled steel, on the other hand, isn’t finished after its initial shaping, and the additional steps it goes through are what sets it apart from its hot-rolled counterpart.

Once it’s been cooled to room temperature, there are a variety of finishing steps that cold-rolled steel can go through in this cooler state, including additional passes through rollers to further shape it, annealing, tempering and surface grinding and polishing. By going through these extra steps, cold-rolled steel is a cleaner, more attractive, more resilient metal with more accurate dimensions than steel that has merely been hot-rolled.

Here at Skolnik we only use cold-rolled steel in our products. In order to insure the correct dimensions crucial for maintaining the quality and consistency of such products as our 15 gallon drums, cold-rolled steel is the appropriate choice. Not only that, but it’s also better at taking paints and finishes that we apply to our barrels, making sure the surfaces of each drum are up to our demanding standards. Of course, how the steel is rolled is only one of many decisions made on the path to an excellent barrel, but by making the right choices early on, we insure that we make the absolute best product for our customers.

The History of Hazmat and Dangerous Goods Packaging

May 3rd, 2018 by Natalie Mueller

Filed under: DOT/UN, HazMat

If you work in the packaging and transportation industries, there’s a good chance that you come across dangerous goods regularly. If you do, then you also come across the term ‘hazmat’. Now, it’s not hard to understand that the two are connected, but what are those connections exactly? What does hazmat have to do with dangerous goods packaging, and just who establishes the rules behind it all?

First, a quick definition. In the United States, the official term for dangerous goods is hazardous materials, which leads to the portmanteau hazmat. Pretty logical, but also easy to take for granted if it’s just another term in the day-to-day sea of acronyms and abbreviations.

Dangerous goods, and in turn hazmat, is a broad umbrella term that encompasses materials that are radioactive, flammable, explosive, corrosive, oxidizing, asphyxiating, biohazardous, toxic, pathogenic, or allergenic. Also included are physical conditions such as compressed gases and liquids or hot materials, and all goods containing such materials or chemicals, or that may have other characteristics that render them hazardous in specific circumstances.

Oversimplified: anything that can hurt a human.

 

Hazmat Regulation in The United States

With such an intimidating list of dangers under its purview, you would think that protection from dangerous goods has been a high priority for our government as long as possible. But, the DOT, EPA and OSHA, three of the most crucial agencies for regulating the safe handling of hazardous materials in the U.S. weren’t even formed until the late 1960s and 1970s.

Then, it was only in 2004 that the Department of Transportation created the Pipeline and Hazardous Materials Safety Administration (PHMSA), which is the agency directly in charge of developing and enforcing regulations in relation to hazmat transportation. Previously, PHMSA’s hazmat and pipeline safety programs were housed within the Transportation Department’s Research and Special Programs Administration (RSPA).

Hazmat Regulation Abroad

Regulators at the global level were a little faster to act. The United Nations Economic and Social Council (ECOSOC)’s publication of the first version of The UN Recommendations on the Transport of Dangerous Goods occurred in 1956. While it isn’t obligatory or legally binding on individual countries, this is the guiding document when it comes the establishing procedures regarding hazmat shipping. For example, all Skolnik barrels that bear a UN certification have been produced to the standards established by the most current version of these recommendations.   

The other crucial contribution to hazmat handling that the UN provides is the Globally Harmonized System of Classification and Labeling of Chemicals, developed in 1992. This is the set of rules that standardized the labeling of hazmat across borders, and is why we use the color coded diamond-shaped pictograms to designate which hazards are in what package.

Further Hazmat Regulatory Bodies

Along with these major organizations, there are plenty of smaller, more specific groups that have their eyes set on specific topics, such as the International Air Transport Association, the International Maritime Organization and the Intergovernmental Organisation for International Carriage by Rail. These are just some of the groups who, as each name suggests, focus on their individual priorities and establish rules and regulations that are adopted, inspire and influence how we handle hazmat here in the states and abroad.


Whether you interact with dangerous goods daily or once in a blue moon, it’s important to not only be able to handle the immediate task of safely storing and transporting these goods, but to know where they fit in larger scheme. If you don’t know why you’re labeling a barrel as hazardous, then it’s easy to make a mistake, and there is little room for error when dealing with hazmat storage and transportation. Luckily, there are plenty of resources for any question you may have regarding hazmat and dangerous goods packaging. All of these organizations have multiple resources you can explore, and if it’s barrel-related, chances are we here at Skolnik can help out too.